首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55192篇
  免费   4778篇
  国内免费   2822篇
电工技术   1864篇
综合类   3482篇
化学工业   13156篇
金属工艺   7533篇
机械仪表   2242篇
建筑科学   5613篇
矿业工程   980篇
能源动力   2339篇
轻工业   2383篇
水利工程   465篇
石油天然气   1174篇
武器工业   676篇
无线电   2361篇
一般工业技术   12745篇
冶金工业   2519篇
原子能技术   354篇
自动化技术   2906篇
  2024年   179篇
  2023年   1699篇
  2022年   1628篇
  2021年   2233篇
  2020年   2374篇
  2019年   2146篇
  2018年   1991篇
  2017年   2368篇
  2016年   2573篇
  2015年   2543篇
  2014年   3372篇
  2013年   4801篇
  2012年   3372篇
  2011年   3311篇
  2010年   2715篇
  2009年   2810篇
  2008年   2236篇
  2007年   3000篇
  2006年   2833篇
  2005年   2340篇
  2004年   1874篇
  2003年   1762篇
  2002年   1556篇
  2001年   1373篇
  2000年   1135篇
  1999年   927篇
  1998年   705篇
  1997年   642篇
  1996年   533篇
  1995年   416篇
  1994年   364篇
  1993年   298篇
  1992年   180篇
  1991年   148篇
  1990年   94篇
  1989年   60篇
  1988年   48篇
  1987年   29篇
  1986年   9篇
  1985年   19篇
  1984年   25篇
  1983年   7篇
  1982年   13篇
  1981年   2篇
  1980年   18篇
  1979年   13篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
Significant efforts have been made to develop highly active non-noble metal-based, affordable metallic and stable electro-catalysts for hydrogen evolution reaction (HER). Strong acid and bases are now used in HER operations to achieve large-scale, sustained H2 fuel production. However, few studies have utilized phosphate-buffered neutral electrolytes (PBS) in the field of neutral electrolyte technology. In this work, a certain alloys with a Ni–Cr basis have been produced as favorable components for the HER under neutral conditions. Additionally, the current investigations are emphasizing on the concentration of buffer phosphate species in the HER activity of various materials. By employing polarization and electrochemical impedance spectroscopy (EIS) in neutral solutions, the electro-catalytic activity of new alloys on HER was evaluated. According to the preliminary findings, the examined Ni–Cr-based alloys show superior HER catalytic activity in neutral electrolytes. Additionally, the Ni–Cr alloy matrix with Fe and Mo added enhances HER electrocatalytic efficiency while lowering interfacial charge transfer resistance. Due to its low overpotential of ?297 mV @ 10 mA cm?2 and Tafel slope of 94 mV dec?1 in 1.0 M PBS media, the Ni–Cr–Mo–Fe alloy exhibits an efficient HER, suggesting that the Ni–Cr–Mo–Fe electrode will be a potential noble metal-free electro-catalyst for HER. The Ni–Cr–Mo–Fe cathode is a readily available and affordable material for the production of HER in neutral medium.  相似文献   
42.
Walnut flour (WF), a by-product of walnut oil production, is characterised by high polyunsaturated fatty acids, proteins, and fibre contents and presents suitability for bakery products. However, when using non-traditional ingredients, it is essential to evaluate the effect on the quality properties of the final product. So, this work aimed to assess the impact of WF on the technological, physicochemical, and sensory properties of gluten-free (GF) cakes. WF was added at a flour blend (cassava (CS) and maize (MS) starches and rice flour) at 0, 10%, 15%, and 20%. The results showed that WF modified starch gelatinisation, increased amylose–lipid complex (ALC) content, and made crumbs easier to chew. Besides, the total dietary fibre (TDF) and protein content significantly increased. Cakes with 15% WF presented the highest specific volume (SV) and no differences in overall acceptability with respect to control. Hence, WF is a suitable ingredient for gluten-free bakery products.  相似文献   
43.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   
44.
45.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
46.
The heat production and thermal storage characteristics of rapid-preparation amorphous powder activated coke (RAC) were investigated. RAC was prepared by using a drop-tube reactor system. The natural oxidation characteristics of RAC were studied through combined TG–FTIR analysis and temperature-programmed experiment. Experimental results showed that CO and CO2 were the main oxidation products of RAC in air, and that the oxidation reaction was in accordance with the Arrhenius equation and law of mass action. Thermal storage characteristics were studied through computational fluid dynamics simulation. The maximum excess temperature θmax increases linearly with the increase of the initial temperature. The concentration fields of the products show that CO2 is mainly concentrated in the upper part of the coke bin, and the CO generated by CO2 at high temperature is mainly concentrated in the central part of the coke bin.  相似文献   
47.
Ceramics are considered intrinsically brittle at room temperature, which is mainly attributed to the limited availability of crystallographic slips and pre-existing geometrical flaws. Moreover, the lack of flexibility has severely hindered many high-end applications of ceramic materials. Here, we produce ceramic sponges that are simultaneously ultra-light, elasto-flexible, thermally insulating, and can fully recover from large deformation with a near-zero Poisson's ratio. These spongy materials also possess superb fatigue resistance without the accumulation of damage or structural collapse for 10,000 large-scale compressive or buckling cycles. We demonstrate the exceptional flexibility is enabled by the elastic distortion of nanograin–glassy dual phase and the fiber bulking in open-cell three-dimensional structure. Moreover, these spongy materials possess superior temperature-invariant superelasticity from deep cryogenic temperatures (−196 °C) to high temperature (1500 °C). Our study not only developed mechanically reliable lightweight ceramics for numerous extreme applications, but also provided new theoretical insights into the origin of flexibility in polycrystalline ceramics.  相似文献   
48.
Hydrogen represents the most conventional fuel to feed Solid Oxide Fuel Cells (SOFCs) for green energy production. However, hydrogen has some drawbacks which prevent the large-scale implementation. Research identified ammonia as promising hydrogen vector. Hereby, highly dispersed Ni nanoparticle are deposited on La-doped strontium titanate by exsolution, greatly affecting the electrochemical performance. The exsolved Ni-doped lanthanum strontium titanate (La0·45Sr0·45Ti0·90Ni0.10-δO3 – LSTNOH) was largely characterized. XRD analysis detected 10 mol% of Ni doping has been successfully incorporated in to the perovskite structure and then released when exposed in reducing environment. SEM images show Ni nanoparticles highly dispersed on the surface. XPS confirms the presence of Ni on the surface after the exsolution and allows to exclude other detrimental diffusion towards the bulk. A LSTNOH derived composite based anode has been investigated through impedance spectroscopy using ammonia and hydrogen as fuel. It demonstrates best performances compared to the one obtained by Ni infiltration on LSTO (La0·45Sr0·45TiO3) composite scaffold. Polarization resistance, running on ammonia, decreases raising the temperature and the performances approach those in hydrogen.  相似文献   
49.
Developing inexpensive and efficient electrocatalysts for hydrogen evolution reaction (HER) in both acidic and alkaline mediums is of great significance to the hydrogen energy industry. Hereby, we prepared a mixture of precursors with homogeneous composition by using the chelating ability of soybean protein isolate (C and N source) and phytic acid (dopant and phosphating agent) with cobalt ions, and achieved one-step synthesis and construction of Co2P/N–P co-doped porous carbon composite by carbonization at 800 °C. The as-synthesized Co2P/NPPC-800 electrocatalyst exhibits low HER overpotentials of 121 and 125 mV at 10 mA cm?2 in 0.5 M H2SO4 and 1.0 M KOH, which are close to those of the commercial Pt/C catalyst. Additionally, the NPPC substrate surrounding the Co2P could diminish the corrosion during the HER, and Co2P/NPPC-800 displays good stability and durability. Furthermore, this work offers a convenient synthesis strategy for phosphide/doped porous carbon composites in other electrochemical energy technologies.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号